Lifting 2-integer knapsack inequalities

نویسندگان

  • A. Agra
  • M. F. Constantino
چکیده

In this paper we discuss the generation of strong valid inequalities for (mixed) integer knapsack sets based on lifting of valid inequalities for basic knapsack sets with two integer variables (and one continuous variable). The description of the basic polyhedra can be made in polynomial time. We use superadditive valid functions in order to obtain sequence independent lifting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjunctive Cuts for Integer Programs

This paper deals with a family of conjunctive inequalities. Such inequalities are needed to describe the polyhedron associated with all the integer points that satisfy several knapsack constraints simultaneously. Here we demonstrate the strength and potential of conjunctive inequalities in connection with lifting from a computational point of view.

متن کامل

Lifting, superadditivity, mixed integer rounding and single node flow sets revisited

In this survey we attempt to give a unified presentation of a variety of results on the lifting of valid inequalities, as well as a standard procedure combining mixed integer rounding with lifting for the development of strong valid inequalities for knapsack and single node flow sets. Our hope is that the latter can be used in practice to generate cutting planes for mixed integer programs. The ...

متن کامل

On the facets of the mixed-integer knapsack polyhedron

We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalit...

متن کامل

Mingling: mixed-integer rounding with bounds

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for mixed-integer programming problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This i...

متن کامل

Sequence independent lifting for 0−1 knapsack problems with disjoint cardinality constraints

In this paper, we study the set of 0−1 integer solutions to a single knapsack constraint and a set of non-overlapping cardinality constraints (MCKP). This set is a generalization of the traditional 0− 1 knapsack polytope and the 0− 1 knapsack polytope with generalized upper bounds. We derive strong valid inequalities for the convex hull of its feasible solutions by lifting the generalized cover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003